

Abschlusspräsentation - Bachelorarbeit

Thema: Möglichkeiten der kombinierten Simulation in Multisim

Matthias Ottmar

Fakultät Elektrotechnik und Informationstechnik

HTWG-Konstanz

H T · Hochschule Konstanz
W Technik, Wirtschaft und Gestaltung

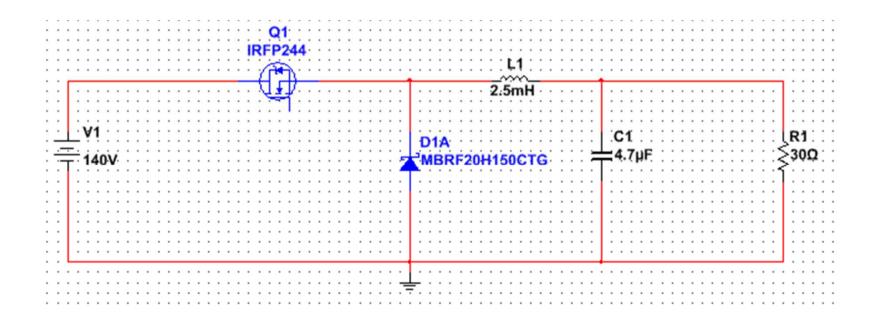
Gliederung

- Motivation, Problemstellung und Zielsetzung
- Durchführung
- Zusammenfassung

Motivation

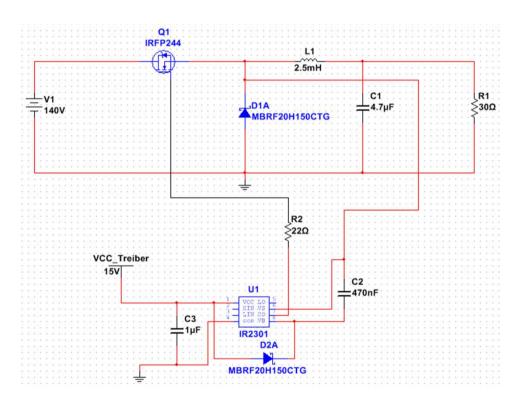
- Leistungselektronik befasst sich mit dem Umformen von elektrischer Energie (z.B. Gleichstromsteller)
 - Analoge Schaltungen mit Leistungstransistoren
 - Mikrocontroller zum ansteuern, regeln und überwachen
 - -> kombinierte Schaltungen entstehen
 - -> Realitätsnahe Simulationen zum Vermeiden von Fehlern und Problemen

Problemstellung


- Möglichkeiten der kombinierten Simulation durch das Simulationsprogramm Multisim
 - -> Grenzen erkennen
 - -> Alternativen herausfinden

Ziel der Arbeit

- Entwicklung eines Tiefsetzstellers
- Regelung durch einen Mikrocontroller
 - -> Ausgangsspannung einstellbar
 - -> Ausgangstrom begrenzbar
 - -> Überstromerkennung
 - -> Regelgeschwindigkeit einstellbar
- In einer Simulationsumgebung Multisim
- Kombinierte Simulation in Multisim testen


Entwerfen des Tiefsetzsteller

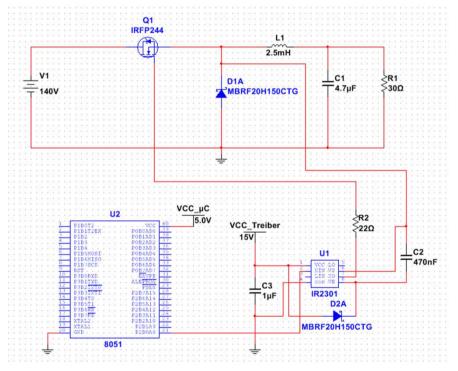
• Dimensionierung der Bauteile

Basisschaltung

 Erweiterung mit Treiberbaustein und Bootstrapschaltung

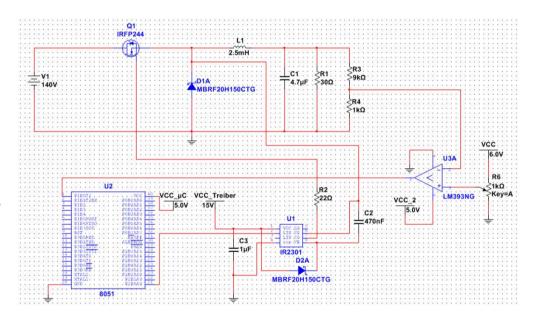
Mikrocontroller 8051

- 8-Bit-Prozessorkern
- Taktfrequenz 12 MHz
- 4 kB internes ROM als Daten- und Programmspeicher
- 128 Byte internes RAM
- 2 Timer/Counter
- 2 externe Interrupts
- 4x 8-bit I/O Ports

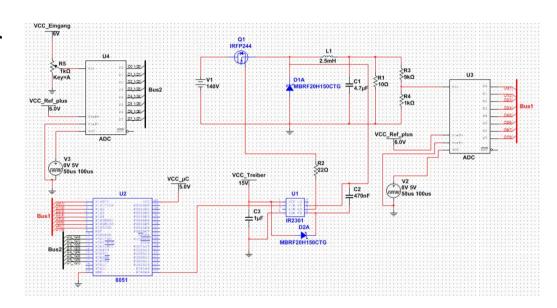

Festes PWM

Mikrocontroller erzeugt PWM-Signal mit konstanter Periodendauer

über Timer-Baustein


• Erste Probleme:

- -> PWM-Mode nicht vorhanden
- -> Interrupts nicht möglich


Komparator

- Ausgangsspannung einstellbar
 - -> über Komparator
 - Nächstes Problem:
 - -> Periodendauer des PWM-Signals variiert durch Programmlaufzeit

AD-Wandler

- Ausgangsspannung einstellbar
 - -> über AD-Wandler
 - Nächstes Problem:
 - -> Simulation stoppt durch Berechnungsprobleme

Fazit Mikrocontroller 8051

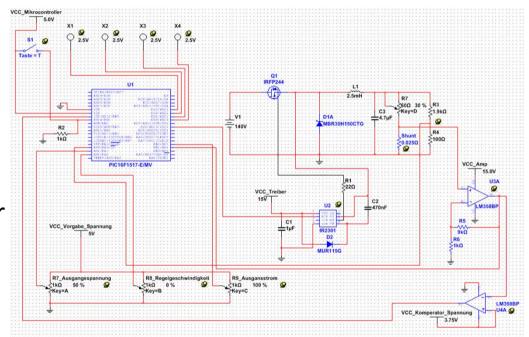
• Probleme:

- Interrupts nicht möglich
- PWM-Mode nicht vorhanden
- Periodendauer des PWM-Signals variiert durch Programmlaufzeit
- Simulation stoppt durch Berechnungsprobleme

• Lösung:

• Alternative finden

Alternative Microchip Datenbank Plug-In


- Entstand durch Kooperation von NI und Microchip
- Datenbank mit 4000 Mikrocontroller von Microchip
- Erstellen des Quellcodes in MPLab X IDE
- Simulation in Multisim
- Extra Debugger in Multisim

Mikrocontroller PIC16F1517

- 8-Bit-Prozessorkern
- Taktfrequenz 20 MHz
- 14 kB internes ROM als Daten- und Programmspeicher
- 512 Byte internes RAM
- 3 Timer/Counter mit PWM-Mode
- 10-Bit AD-Wandler mit 28 Kanäle
- bis zu 35 I/O Pins
- Interrupts funktionieren

Regelung mit PIC16F1517

- Kombinierte Simulation möglich
 - -> Ausgangsspannung einstellbar
 - -> Ausgangstrom begrenzbar
 - -> Überstromerkennung
 - -> Regelgeschwindigkeit einstellbar

Zusammenfassung

- Kombinierte Simulation in Multisim ohne Erweiterung
 - Nur 4 Mikrocontroller vorhanden
 - Keine Interrupts möglich
 - -> Deshalb nur mit Problemen möglich
- Kombinierte Simulation in Multisim mit Erweiterung
 - Zusätzliche 4000 Mikrocontroller vorhanden
 - Interrupts und weitere Funktionen der Mikrocontroller funktionieren
 - -> kombinierte Simulationen möglich
 - Aber benötigt Java Run Time Environment Version 7
 - -> Sicherheitslücke vorhanden und Probleme mit anderen Programmen

Herzlichen Dank für Ihr Aufmerksamkeit

Fragen?