Heinz Rebholz 2024/05/04 02:07

Heinz Rebholz

Leistungselektronik und elektrische Antriebstechnik

Sprechstunde: Online Sprechstunden via Skype oder Google am Fr. 9:45 -10:45, Bitte rufen Sie mich an: heinz.rebholz

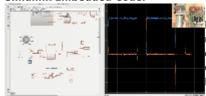
E-Mail: heinz.rebholz@htwg-konstanz.de

Tel: +49 (0) 7531 / 206-220

Raum: A 230 Hochschule Konstanz 78462 Konstanz Alfred-Wachtel Str. 8

- Leistungselektronik
- Abschlussarbeiten / Praktika
- EMV-Labor Versuchsbeschreibung
- Skript zur Vorlesung EMV
- Short Time FFT (Kurzzeit FFT)
- Übungsaufgabe zur Vorlesung Elektrische Antriebe
- Solar Tracker
- Studentische Projekte

Aktuelles


Recherchearbeit zu den Bordnetzen moderner Kraftfahrzeuge

Die Studierenden der Vorlesung "Bordnetze moderner Kraftfahrzeuge" haben über das gesamte Semester recherchiert mit welchen Lösungen die Fahrzeughersteller versuchen die geltenden CO2 Grenzwerte einzuhalten. Aktuell zeichnet sich dabei bei vielen Herstellern der Weg ab, dass mit Hilfe von Mild-Hybrid Systemen ein sanfter Übergang in die Elektromobilität gewählt wird. Dabei unterstützt ein 48V Bordnetz den Verbrennungsmotor und hilft so ca. 15-20% CO2 einzusparen.

Neben den Fahrzeugherstellern haben die Teilnehmer sich auch die Komponenten, wie zum Beispiel ein Riemenstartergenerator, im Detail angeschaut oder die regulatorischen Gegebenheiten mit der EC R100. Die Rechercheergebnisse zum Download:

_

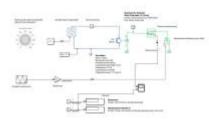
Simulink Embedded Coder

Matlab Simulink bietet mit dem Embedded Coder die Möglichkeit die Programmierung von Mikrocontrollern komfortabel grafisch umzusetzen. Wir werden zukünftig die Möglichkeit nutzen für unsere Projekte in der Vorlesung Leistungselektronik und den Motorprüfständen zur Laborübung elektrische Antriebe. Im Video zeige ich die Möglichkeiten der Toolkette anhand einer Regelung eines Gleichstrommotors zusammen mit den grundlegenden Einstellungen.

Mit einem Klick auf das Bild erhält man einen ersten Eindruck in der animierten Grafik.

Heinz Rebholz 2024/05/04 02:07

Online-Vorlesung


Ab dem Sommersemester 2019 ist die Vorlesungen EMV als Online-Skipt mit Vorlesungsvideos verfügbar. Skript zur Vorlesung EMV

Ein Großteil der Vorlesung Leistungselektronik ist ab sofort als Videosequenz auf Youtube verfügbar: Playlist Leistungselektronik

Balancingsystem sind für eine effiziente und sicher Nutzung von Lithium Batteriesystemen unerlässlich. Da passive System stets ein Teil der in der Batterie gespeicherten Energie in Wärme umsetzen geraten werden Balancingsystem immer öfter in Betracht gezogen. Die Frage die sich jedoch stellt ist stets: Welches Balancingsystem ist für meine Anwendung das Richtige. In den letzten Jahren haben die Halbleiterhersteller eine Vielzahl an On-Chip Lösungen vorgestellt welche auf unterschiedlichen Verfahren basieren. Herr Dollhopf vergleicht und bewertet in seinem Masterprojekt verschiedene Möglichkeiten zur Umsetzung aktiver Balancingsysteme. Download:

masterprojekt_felix_dollhopf_aktives_balancing.pdf

Ab dem Sommersemester 2020 startet für die Studiengänge EIB, MEP, und MEK der erste Selbstlernversuch mit Matlab Simulink. Das Ziel der Übung ist es für die Gleichstrommaschine mit Hilfe einer Simulation die Drehzahl- Drehmomentkennlinie zu erstellen für alle Quadranten. Ab dem Wintersemester steht dann der äquivalenten Hardwareaufbau als praktische Übung zur Verfügung. Übungsaufgabe zur Vorlesung Elektrische Antriebe

Martin Winkler (Leiter R&D) und Constanze Raichle von MinebeaMitsumi stellen uns die Funktionsweise von BLDC Motoren in der Vorlesung elektrische Antriebe vor. BLDC Motoren sind aus unserem täglichen täglichen Leben nicht mehr wegzudenken und haben bürstenbehaftete Maschinen in vielen Applicationen verdrängt. Hr. Winkler veranschaulicht die Funktionsweise, Aufbau und Einsatz der Maschinen.

Aktuelle Stellenausschreibung für ein Praktikum im EMV-Labor der Porsche Engineering.

pe-2140.pdf

Neues Softwaretool in der Leistungselekronik

Heinz Rebholz 2024/05/04 02:07

Mit PROTEUS haben wir ein neues Simulationstool mit dem es möglich ist analoge Schaltungen zusammen mit Mikrocontroller zu simulieren.

Das Programm beinhaltet verschiedene Compiler womit der C-Code in der Gesamtschaltung vor dem Aufbau getestet werden kann.

Für uns stehen die Controller der Atmel Familie und Arduino Boards zur Verfügung.

Das Beispiel zeigt die Simulation einer aktiven PFC-Stufe (Power- Factor Correction) wie wir sie in der Vorlesung PFC simulieren und aufbauen.

Zur Darstellung des animierten Gif bitte anklicken.

Innovationen in der Hochschullehre: Projektlabor Leistungselektronik

Ab dem Somersemester 2018 startet das Projektlabor Leistungselektronik. Die bisherige Struktur der Vorlesung als Vortragseinheit

und anschließender Rechenübung wird aufgebrochen in einen projektbezogenen Inhalt und einen praktischen Anteil im Labor.

Die Leistungselektronik soll so "begreifbar", sowie die Entwicklungsprozesse wie sie im Berufleben stattfindet besser abgebildet werden.

Das Fellowships Programm des Stifterverband für die deutsche Wissenschaft unterstütz das Labor Leistungselektronik finanziell mit neuer Ausstattung,

Software und Hardware zur Realisierung studentischer Projekte. Weitere Infos zum Projektlabor sind zu finden unter: Stifterverband für die Deutsche Wissenschaft e.V.

48V Seminar

48V Bordnetze in modernen Kraftfahrzeugen ermöglichen neben einer signifikanten CO2 Reduktion den Einsatz von elektronischen Hochstromverbrauchern. Funktionen die bisher nur mechanisch darstellbar waren lassen sich mit erhöhter Leistung und Zuverlässigkeit als elektrische Nebenaggregate ins Fahrzeug integrieren.

Neben der mittlerweile hohen Verfügbarkeit an Komponenten benötigt das 48V Bordnetz im Vergleich zu Hochvoltsystemen nur geringe Sicherheitsmaßnahmen wodurch eine schnelle und unkomplizierte Integration in die Fahrzeugumgebung möglich ist.

Haus der Technik e.V

Impedanzanalysator

Das Labor für Leistungselektronik bzw. elektromagnetische Verträglichkeit (EMV) hat jüngst ein neues Messgerät erhalten, mit welchem sich das frequenzabhängige Verhalten passiver Bauelemente exakt bestimmen lässt.

Für die Auslegung und Simulation hocheffizienter elektrischer Wandlersysteme ist es unerlässlich das reale Verhalten der verwendeten Bauteile zu berücksichtigen.

Die Impedanzanalyse eröffnet uns damit neue Möglichkeiten in den Kernthemen der Elektro- und Informationstechnik, insbesondere in den Bereichen Energieversorgung und Elektromobilität.

Rechtlicher Hinweis:

Für den Inhalt der Seiten, die von dieser Seite(n) aus per Link erreichbar sind, sind die jeweiligen Betreiber / Verfasser selbst verantwortlich und haftbar.

Von etwaigen illegalen, persönlichkeitsverletzenden, moralisch-ethisch oder in sonstiger Weise anstößigen Inhalten distanziere ich mich ausdrücklich.

datenschutzerkaerung.pdf